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Introduction

Architecture of the High-Precision Surface

Control System

• It consists of a large deployable
reflector, a set of flexible
actuators (mounted on the back of
the reflector), a wavefront
sensing metrology subsystem,
and an active (feedback)
controller.

• Guided by shape control laws, the
controller periodically updates
voltage signals to control the
actuator strain at various antenna
positions, thus maintaining
desired shape contour
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Inflatable Membrane Reflector Development

• Consist of two thin films, a reflector and a
canopy, that are joined around the edges

• The films are joined using a leak tight
bonding technique

• The reflector film is typically metalized
with a vapor deposited coating (silver or
aluminum)

• The reflector is integrated with an inflatable
torus

• Compliant features are used to minimize
loading changes

• The boundary tension is adjusted to achieve
the best shape

10- and 5-meter inflatable reflector

Reflector Design 



Inflatable Membrane Reflector

• Maximum packaging efficiency

• Simple reliable deployment
method

• Offers a solution to aperture sizes
>25 m where other antenna
technologies begin to be limited by
launch vehicle volume and mass
restrictions

• Low or zero CTE membrane
materials are being develop to
minimize in space thermal
distortion

4mx6m Off-Axis Inflatable Antenna 

Advantages



• The film was secured to the coating
drum and put into the vacuum chamber.

• The chamber was evacuated to remove
residual solvent and then the film was
removed for inspection prior to coating.

• The film was coated and removed.

• ~1200Å of aluminum was deposited
onto the ~2-mil CP-1 thin film

• Since the film’s diameter was larger

than the coating drum length, the film

was rotated 90° and coated a 2nd time in

order to coat the “wings”

VDA Coating

Inflatable Membrane Reflector Development



Inflatable Membrane Reflector Development

Precisely Shaped Casting Mandrel

• To cast the thin polymer films

• Removal of the coating around
the reflector / canopy bond band
(i.e. 96” aperture line)

• Marking of the catenary
locations

• Attachment of the
photogrammetry targets

• Attachment of the actuators



Recent Developments of Inflatable Antenna Technology 

• On-axis, off-set, and
Cassegrain antennas have
been designed and fabricated

• RF characterizations of off-
set and on-axis antennas
have been performed at
frequencies from X-band to
Ka-band

8.4 GHz Data for 4-m x 6-m Test Article

Inflatable Membrane Reflector Development
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Theoretical Analysis of the Reflector Shape

Control System

Reflector Modeling

• Shallow spherical shell
approximation

• Pre-tensioned membrane shell
with bending stiffness (internal
inflation pressure)

• Simply supported boundary
conditions at the rim

• Modeled using Ritz method and
a Fourier-Bessel expansion
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Theoretical Analysis of the Reflector Shape

Control System

• A Least-Squares shape control

• LS controller input is the displacement from all metrology sensor

measurements

• Using the equation obtained from the reflector model the desire

actuation voltage can be calculated.

• Saturation block accounts for PVDF voltage saturation effects



W – Error: Spherical shape not
achieved on inflation
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Theoretical analysis of the reflector shape

control system

• Surface deformations due to combined uniform and gradient thermal load

• Limited actuator saturation

• RMS error reduction to 0.19mm (95.58 %)

Sample results — uniform + gradient thermal loading



Theoretical analysis of the reflector shape

control system

• Surface deformations due to W-error (wmax = 2.8 mm)

• No actuator saturation occurs

• Patches near center are not utilized by the control law

• RMS error reduction to 0.0062mm (99.69 %)

Sample results – w-error

(mm) (mm)
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Development of PVDF Based Actuators

Overview of Fabrication Process



• Over 170 actuators have

been fabricated for a 2.4-m

engineering model.

• Actuators have been tested

to 4KV, will be operated at

the maximum of 2 KV.

• A large number of epoxies

have been experimentally

studied and the most

suitable one has been

identified

• Actuator bonding process

has been developed.

Development of PVDF Based Actuators
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Demonstration of Membrane Reflector

0.2-m diameter engineering model



Demonstration of Membrane Reflector

Demonstration video
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Conclusions

• Analytical model (integrated reflector, actuator, and controller)

has been developed and analyzed.

• Fabrication process for Electroactive Polymer (EAP) actuators

has been developed. EAP actuators have fabricated.

• 0.2-m diameter reflector engineering model has been fabricated

and demonstrated, showing that the EAP actuator technology is

promising for the surface control of large in-space deployable

reflectors.

• The feasibility of the EAP actuator technology as well as the high

precision surface figure control architecture has been

demonstrated.

• Future works include the development of 2.4-m diameter reflector

engineering model.



End


